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Traditional and Neural Networks Programs 
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Abstract— The introduction of techniques of artificial intelligence in software of control and decision is an essential element in research 
and development of tomorrow’s power systems. Neural networks are among the techniques most used in the field of artificial intelligence.  
The economic dispatch is a key sector in the electricity networks, where it must generate less energy for the same demand with good 
economic operation reducing repartition grid losses to have the least cost of kWh possible. In this paper, we will opt for a quicker economic 
dispatch; we will program a mesh network of 8 buses including 3 generation units using traditional program then backpropagation learning 
neural network program, finally, we will compare the two programs in terms of speed and reliability. 

Index Terms— Power systems, economic dispatch, artificial intelligence, neural networks, grid losses, traditional program, 
backpropagation learning. 

——————————      —————————— 

1 ECONOMIC DISPATCH      
1.1 Introduction                                                        
HE Economic dispatch is a static optimization problem 
which consists in distributing active power production 
requested by different grid buses from generation unites 

in the most economical way. This distribution must of course 
respect the limits of production of generation units. The varia-
ble to be optimized is the production cost. 

1.2 The cost function 
The cost of production of a plant is generally modeled by a 

polynomial function of second degree in PGi (active power 
generated by the plant i) whose coefficients are constants spe-
cific to each plant: [1] 
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1.3 Economic dispatch solution 
To minimise the total production cost of an interconnected 

power system we must minimize the sum of cost functions of 
production units  
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taking into consideration the following constraints: 
Equality constraints:     

1 1

ng nd

Gi Dj
i j

P P
 

                                  (3) 

Inequality constraints:    min max
Gi Gi GiP P P                            (4) 

where C is total cost function, ng is a total number of pro-
ducer nodes and nd is a total number of consumer nodes. PGi 
represents the active power generated by the ith generator, PDj 
is the active power consumed by the jth load, PGimax is the max-
imum active power of the ith generator and PGimin is the mini-

mum active power of the ith generator. [2] 
The solution of this problem is obtained by using the La-

grange function which is obtained by multiplying the function 
of equality constraints by the Lagrange multiplier λ, adding to 
the total cost function (5). 
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The derivatives of the Lagrange equation with respect to 
each independent variable (PGi, λ ) give us: [3] 
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So, from (6) λ represents the incremental cost of the ith ge-
nerator, then, for each energy packet the generator having the 
least λ is responsible of production (least cost) respecting the 
constraints of (3) and (4). 

1.4 Insertion of losses formula in the economic 
dispatch 

   1.4.1 Calculation of Losses (PL):  
The general formula of losses following the equations of 

power flows is: 
T

LP G                                         (8) 
with M   . M and δ are matrices of line’s incidence and phas-
es of nodes respectively. G is the diagonal matrix of line conduc-
tances. 

12 13 14 ( 1)[ ... ]n nG diag G G G G                         (9) 

 δ can be approximated by a DC Load Flow so, 

         1( )     G D G DP P A A P P                (10) 
A represents the DC Load flow Matrix, therefore, 
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where                  1 1TB A M GMA   

T
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1.4.2 Penalty Factor: supposing 
 PGi   Power generated by the ith plant. 
 PCi Part of the power generated that is really consumed by 
loads. 
 PLi  Part of the power generated that is lost in the lines, we 
know that:                       Gi Ci LiP P P                                      (12) 

and from(1)                2
Gi
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where &i i i i i ib b f c c f    are the new coefficients of (1), 
with      1(1 )L

Gi

dP
i dPf    is the penalty factor of the incremen-

tal cost. 

1.4.3 Criterion of convergence: 

If 
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       the system has converged. [1] 

2 NEURAL NETWORKS 

2.1 Introduction 
The origin of artificial neural networks comes from the bio-

logical neuron modeling test by Warren McCulluch and Wal-
ter Pitts. They assumed that the nerve impulse is the result of a 
simple calculation made by each neuron and the thought is 
born with the collective effect of a network of interconnected 
neurons. [4] 

2.2 Neuron Model 
A neuron consists essentially of an integrator that performs 

the weighted sum of its inputs. The result n of this sum is then 
transformed by a transfer function f which produces the neu-
ron output a. Fig. 1 

 
Fig. 1. Artificial neuron model 
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This output corresponds to a weighted sum of the weights 
wi,j and inputs pi  minus the bias b. [5] 

2.3 Neural network learning 
There are essentially two types of learning, unsupervised 

and supervised. In our paper we will use a supervised learning 

where we impose to the network specific operations by forcing 
it from inputs submitted, the outputs to take by changing the 
synaptic weights. [6] 

2.4 Error backpropagation learning 

 

Fig. 2   Representation of three layers network 

The simple perceptron consists of a single layer of S neu-
rons which are fully connected to vector p of R entries. In a 
multilayer perceptron the equation that describes the output 
of layer k (Fig. 2) is given by: 

1( )k k k k ka f W a b   for k = 1,…,M                 (16) 
where M is the total number of layers. The network outputs 

correspond to Ma . The backpropagation algorithm uses the 
mean squared error as performance index, and allows a su-
pervised learning with a set of associations (stimulus, target) 
{(pq,dq)}, q=1,...,Q  where  pq   represents the stimulus vector 
(inputs) and  dq   the target vector (desired outputs). At each 
time t, we can forwardpropagate a different stimulus p(t) 
through the network of Fig. 2 to obtain an output vector a(t). 
This allows us to calculate the error e(t) between what the 
network produces as output for the stimulus and the target 
d(t) associated with it: 

( ) ( ) ( ) e t d t a t                                    (17) 

The performance index F minimizes the mean square error. 
This index is approximated by the instantaneous error ˆ( )F x , 
the vector x includes all the weights and biases of the network, 

   ˆ( ) ( ) ( )TF x e t e t                                   (18) 
we use the gradient descent method to optimize x: 
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where   represents the learning rate, so: 
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k
in represent the activation levels of a layer k which depend di-

rectly on weights and bias on this layer; 
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so, the second term of (20) and (21) becomes: 
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for the first term of (20) and (21), we define the 
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In this case, we get a recursive formula where sensitivity 
layers upstream (input ks ) depend on the sensitivity of the 
layers downstream (output 1ks ). That's where the term «back-
propagation» comes, because the direction of information prop-
agation is reversed compared to that of (16). [5] 

3 ECONOMIC DISPATCH USING NEURAL 
NETWORKS 

 

Fig. 3  The 138KV area from IEEE 24-Bus Test Network[7] 

In this example we will study and program the economic 
dispatch of a mesh network using the traditional and the neural 
network programs. The network is the 138KV area in the IEEE 
24-Bus Test Network (Fig. 3) and constituted of 8 busbars; three 
Generation buses (Bus 1, Bus 2 and Bus 3) and five Load buses 
(Bus 4, Bus 5, Bus 6, Bus 7 and Bus 8) [7] 

First, we show the characteristics of generators; 

TABLE 1 
CHARACTERISTICS OF GENERATORS [7] 

Gen Pmax 
[MW] 

Pmin 
[MW] 

a                    
[$/h] 

b              
[$/MWh] 

c            
[$/MW²h] Bus 

Bus 1 308 0 646.99 19.18 0.0322 
Bus 2 350 0 646.99 19.18 0.0322 
Bus 3 250 0 1829.71 27.22 0.0628 

Second, we give busbars distances and impedances;  

TABLE 2 
DISTANCES AND IMPEDANCES BETWEEN BUSBARS [7] 

Line from to Distance 
[Miles] R[Ω]  X [Ω] 

1 1 8 55 0.055 0.21 
2 1 6 45 0.02 0.08 
3 1 2 3 0.003 0.014 
4 2 7 60 0.015 0.115 
5 2 5 50 0.05 0.192 
6 3 4 16 0.016 0.06 
7 4 7 43 0.043 0.165 

8 4 6 43 0.043 0.165 
9 5 6 16 0.014 0.061 
10 7 8 31 0.031 0.119 

Afterwards, we present energy demands of load buses; 

TABLE 3 
ENERGY DEMANDS OF LOAD BUSES  

DEMAND [MW] TOTAL  
DEMAND 

[MW] B4 B5 B6 B7 B8 

0 46 1 15 90 152 
0 56 10 25 100 191 
0 66 20 35 110 231 
0 76 30 45 120 271 
0 86 40 55 130 311 
0 96 50 65 140 351 
0 106 60 75 150 391 
10 116 70 85 160 441 
20 126 80 95 170 491 
30 136 90 105 180 541 
40 146 100 115 190 591 
50 156 110 125 200 641 
60 166 120 135 210 691 
70 176 130 145 220 741 
80 186 140 155 230 791 
90 196 150 165 240 841 
100 206 160 175 250 891 

3.1 Traditional Program 
The traditional program (dispatch with losses) gives us the 

results shown in Table 4. 

3.2 Associated Neural Network Program 
Based on the results of the traditional dispatch program, we 

will create a neural network with P: input matrix [5x17]taken 
from Table 3, T: target matrix [3x17]taken from Table 4 
representing the power generated by the three stations using 
traditional program. We will use two layers neural network 
with error backpropagation learning (Fig. 4): 

 

 

Fig. 4   Representation of the neural network used 

The network contains: an input (P matrix), a hidden layer of 
10 neurons with tansig (hyperbolic tangent sigmoid) activation 
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function and an output layer of 5 neurons with Pureline (linear) 
activation function. The learning results are shown in Table 4. 

TABLE 4 
RESULTS OF PLANTS GENERATIONS FOLLOWING TOTAL DEMANDS 

OF TABLE 3 USING TRADITIONAL AND NEURAL NETWORK PROGRAMS 

TRADITIONAL PROGRAM 
RESULTS [MW] 

 (target) 

NEURAL NETWORK 
PROGRAM RESULTS 

[MW] (output) 
B1 B2 B3 B1 B2 B3 

153.053 0 0 152.451 1.859 1.622 
192.352 0 0 192.758 1.464 0.589 
232.705 0 0 235.009 0.292 0.631 
273.112 0 0 272.580 0.599 1.231 
307.207 6.291 0 300.584 8.783 1.924 
307.633 46.175 0 310.004 38.134 1.909 
288.103 106.935 0 288.254 107.243 0.371 
307.412 117.122 21.097 298.709 124.038 21.392 
307.91 127.326 61.005 307.791 126.953 60.894 

307.444 137.548 102.136 309.066 131.349 105.869 
307.271 150.482 140.448 310.001 150.728 137.788 
307.745 180.552 160.551 309.189 180.089 160.627 
307.244 211.715 180.666 307.778 210.695 181.743 
307.769 241.992 200.792 307.894 239.753 203.061 
307.322 273.376 220.930 309.280 269.228 222.915 
307.900 303.865 241.08 310.083 303.132 238.014 
307.906 349.977 244.867 308.067 346.016 244.817 
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                             ° ° °   Output (y matrix) after learning and simulation. 

                                   Target (T matrix) (B1 B2 B3) 

Fig. 5   Comparison between output (Y) and Target (T) 

We can see from Table 4 and Fig. 5 that the values of the out-
put are close to the target. We can deduce then that the training 
of our neural network is considered good. We must therefore 
test the network to judge the reliability of the learning. 

3.3 Network Test 
We introduce the matrix Ptest which contains values in the 

borders of training matrix P, but did not participate in it. 

TABLE 5 
BUSBAR DEMANDS FOR NEURAL NETWORK TESTING 

Ptest [MW] 
B4 B5 B6 B7 B8 
0 75 29 44 119 
0 77 31 46 121 
11 117 71 86 161 
25 131 85 100 175 
53 159 113 128 203 
65 171 125 140 215 
72 178 132 147 222 
86 192 146 161 236 

 
then, Ptest is passed through the traditional and Neural net-

work programs. This will give us Ttest and Ytest respectively 
(Table 6).  

TABLE 6 
TEST RESULTS MATRICES TTEST AND YTEST 

Ttest [MW] Ytest [MW] 
B1 B2 B3 B1 B2 B3 

269.069 0 0 269.784 0.001 0.004 
277.156 0 0 276.264 0.971 0.003 
307.460 118.142 25.079 309.767 116.283 24.360 
307.172 132.435 82.044 307.092 128.125 86.656 
307.892 189.592 166.584 307.629 189.400 167.042 
307.503 226.841 190.727 307.038 228.499 189.488  

 
 

307.878 248.060 204.819 306.984 250.808 202.875 
307.666 291.657 233.018 307.694 290.522 234.198 
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                                                     ° ° °    Output (Ytest matrix) after learning and simulation. 

                                  Target (Ttest matrix) (B1 B2 B3) 

Fig. 6   Comparison between Ytest and Ttest 

Based on data in Table 6 and Fig. 6, we can confirm that the 
learning of our neural network is considered good. To have a 
very good to excellent learning, output must be perfectly iden-
tical to the target (Y ≡ T), this requires: 
- Using a good economic dispatch traditional program, 

based on precise data: power plants parameters, lines imped-
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ances and grid topography; 
- Simulating the largest number of cases based on actual sta-

tistics of busbars energy demands;  
- Simulating random and unpredictable cases (fault cases) 

which are not included in the statistics; 
- Reducing learning step of the neural network to make a 

significant interpolation for unknown data (unpredictable); 
- Adding more data, i.e. increasing the size of P and T ma-

trices, thus making a more detailed learning which covers the 
majority of cases from the traditional program (caution: very 
lengthy P and T matrices ask for more powerful processors 
otherwise we risk having slow program). 

A good economic dispatch software based on neural net-
works, must have a complete and excellent learning and test, 
then, it could execute directly the dispatching, i.e. demand 
data could be presented in real time to the neural network 
program where the decisions take two cases: if the neural net-
work finds data (real time) in its matrix P, it gives immediate 
release to predefined outputs from matrix T; if the neural net-
work cannot find data in matrix P, it makes a direct interpola-
tion to give results. 

4 CONCLUSION 
The most important difference between traditional and 

neural network programs is the execution time. The traditional 
program is slow because: 

- It uses iterative loops : if, while and for ; which affects 
directly the execution time; 
- It stocks a largest number of parameters: parameters of 

plants, lines and each busbar; 
- The more a network is meshed the more the program 

is slow. 
For the neural network program, the execution time is very 

rapid (milliseconds), because: 
- It contains loops only on training; then after training 

the problem of dispatching becomes a classification problem. 
- It is an executor; it performs data already stored and 

interpolates intermediate ones. 
In practice, we opt for an economic dispatch with the fastest 

possible frequency (5 or 15 minutes instead of every hour [8]), 
even in real time [9], which is practically impossible with the 
traditional program. 

To control power grids, time is very important and vital es-
pecially in economic dispatch and many other disciplines: pro-
tection, stability, power flow, etc. Using techniques of artificial 
intelligence and more specifically neural networks reduces the 
execution time; this will bring a huge economic gain by reduc-
ing losses, thus restraining the consumption of fuels (coal, oil, 
gas, uranium etc.). The decrease of production implies a con-
tribution to the preservation of the environment by reducing 
pollution and global warming. 
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